组长简介 组长简介

最小化 最大化

       邹冰松,男,1964年2月出生,湖南人。
       现任中科院理论物理所研究员,中国科学院大学兼职教授,西班牙瓦仑西亚微粒物理研究所IFIC国际科学顾问委员会委员,国际专业核心期刊Nucl.Phys.A的Supervisory Editor。
 
1984年  毕业于北京大学技术物理系。
1987年  在中国科学院高能物理研究所获硕士学位,
1990年  在中国科学院理论研究所获博士学位。
1990年 - 1992年  在瑞士国立粒子物理核物理研究所PSI做博士后;
1992年 - 1998年  受聘于伦敦玛丽女王大学,在英国国立卢瑟福实验室工作。
1998年  回国在中科院高能物理所理论室工作,任研究员、博士生导师,
2005年 - 2012年  任理论室主任。
2007年 - 2012年  任中国科学院大科学装置理论物理研究中心主任。
2012年 - 2017年  任中科院理论物理所副所长(主持工作)。
2021年11月 当选为中国科学院院士。
 
       已在国内外学术期刊上发表论文3百余篇,他人引用数千次;在国际会议上做学术报告数十次,其中大会特邀报告40余次;应邀担任PANIC(粒子和核物理)、FB(少体物理)、HADRON(强子谱)、BARYON(重子物理)、NSTAR(核子激发态)、MENU(介子核子物理)、MESON(介子物理)和QNP(夸克核物理)等系列国际会议的国际顾问委员会成员。2002年获得国家杰出青年基金资助,2003年获中组部、中宣部、中统部、人事部、教育部和科技部联合授予的留学回国人员成就奖,2004年入选国家七部委首批新世纪百千万人才工程国家级人选,2009年获中国物理学会吴有训物理奖,2011年获中国科学院优秀研究生导师奖,2013年获中国科学院优秀研究生指导教师奖。

研究档案 研究档案

最小化 最大化

学术活动 学术活动

最小化 最大化
«返回

内容

sQGP and extreme QCD

 

Date : From 2015-05-11 To 2015-06-05
Advisory committee : Jean-Paul Blaizot (Saclay),Frithjof Karsch (BNL and Bielefeld),Krishna Rajagopal (MIT),Dirk Rischke (Frankfurt), Raju Venugopalan (BNL),Jochen Wambach (GSI),Nu Xu (Berkeley & CCNU),Zhao-xi Zhang (ITP-CAS), Peng-fei Zhuang (Tsinghua),Bing-song Zou (ITP-CAS)
Local coordinators : Rong-gen Cai (ITP),Heng-tong Ding (CCNU),Mei Huang (IHEP-CAS),Yu-xin Liu (Peking),Yu-gang Ma (SINAP-CAS),Qun Wang (USTC),Hong-shi Zong (Nangjing)
International coordinators : Jiunn-Wei Chen (Taipei),Hong Liu (MIT),Jan M. Pawlowski (Heidelberg),Ralf Rapp (TAMU),Xin-nian Wang (Berkeley)

 

The proposed program is about physics of matter of strong interaction under extreme conditions in high temperature and density. This situation was realized in the very early stages of the universe evolution and exists in the inner core of cold neutron stars and pure quark stars. In the laboratory, extreme conditions of temperature and density are created in heavy-ion collisions at relativistic energies. Such experiments are performed at the world's largest and most powerful accelerator facilities: the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) and the Large Hadron Collider (LHC) at CERN. The ensuing "little bangs" aim at creating similar conditions as those during the quark-hadron transition in the early universe, trying to advance our understanding of primordial strong interaction matter created in the "big bang". The physical understanding of the dynamics of strong-interaction matter in the early universe, in astrophysical scenarios, or in heavy-ion collisions, requires detailed theoretical studies of its equilibrium and non-equilibrium properties. Central questions concern the phase diagram and the nature of possible phase transitions, the structure and fundamental degrees of freedom of the various phases, the pertinent transport properties and the thermalization time scale.

 
The last decade has witnessed several benchmark discoveries in this field – strongly coupled QGP (sQGP), jet quenching, collective flow, etc, which greatly deepen our understanding of strong interaction under extreme conditions. The sQGP is one of the most important discovery in relativistic heavy ion collisions in recent years. This sparks and initiate a number of new research directions and topics about sQGP properties in both experiments (RHIC, LHC etc.) and theories, many of them have made substantial progress.
 
There is a rapid growth of this field in China. The proposed program is aimed to bring together world-renowned theoretical physicists in this field and have deep discussions about fundamental properties of sQGP and extreme QCD among Chinese and abroad researchers. Most important is that the program will make a chance for young people in china to get in touch with world-class researchers and boost the generation of new ideas and new contacts.
 
Proposed topics are:
 
Dissipative relativistic hydrodynamics in (3+1)-dimension
Jet tomography in dense and hot matter
Transport properties
Thermalization
Color Glass Condensate/Glasma
Initial state of hadronic and nuclear collisions
Collective flows
Electromagnetic probes
Quest for critical end point in QCD phase diagram
Lattice QCD at finite temperature and density
Field and Field/Gravity duality theory at finite temperature and density